INCA-FLOW
Getting Started
Contents

1 General information about INCA-FLOW ... 5
 1.1 Calibration with INCA-FLOW ... 5
 1.2 Hazards when used for the intended purpose ... 7
2 General information .. 9
3 Privacy Statement .. 12
4 Storing and Deleting Personal or Personal-Related Information: Windows User Data 13
5 Safety .. 15
 5.1 Obligations and liability ... 15
 5.2 Intended use ... 15
 5.3 INCA-FLOW safety devices ... 15
 5.4 User’s qualifications ... 16
6 Requirements for using INCA-FLOW .. 17
 6.1 Hardware ... 17
 6.2 Software .. 17
7 Installation of INCA-FLOW ... 19
 7.1 Preparing to install ... 19
 7.2 Installing INCA-FLOW ... 19
 7.3 Licensing the Software .. 22
 7.3.1 ETAS License Models ... 22
 7.3.2 How to get a License ... 23
 7.3.3 Check the license status ... 23
 7.3.4 Add a license file .. 24
 7.4 INCA-FLOW silent setup ... 25
 7.5 Command line parameters .. 25
8 Installing the INCA-FLOW Runtime license .. 26
9 Uninstalling INCA-FLOW ... 27
10 ETAS Contact Addresses .. 28
Figures

Figure 1: Conventional calibration method... 5
Figure 2: Calibration with INCA-FLOW ... 6
Figure 3: Flowchart of automated calibration process.. 6
Figure 4: Example 1 ... 10
Figure 5: Example 2 ... 10
Figure 6: Element resolving.. 11
Figure 7: INCA-FLOW data flow... 18
Figure 8: Welcome window.. 19
Figure 9: INCA-FLOW Release Notes ... 20
Figure 10: Select installation folders.. 21
Figure 11: Installing INCA-FLOW .. 21
Figure 12: Installation complete.. 22
Figure 13: ETAS License Manager.. 24
Figure 14: Install license... 25
Figure 15: ETAS License Manager with activated licenses... 25
General information about INCA-FLOW

This part contains information about INCA-FLOW. INCA-FLOW is a process-oriented tool to help engineers meet increasing challenges in the ECU development process. Given the continuing trend in the automotive industry to implement increasingly complex control functions, to shorten deadlines and to strive for quality improvements, these are also the basis for optimizing INCA-FLOW. INCA-FLOW utilizes the industry-standard calibration software to enhance efficiency by automating the calibration procedure for ECUs.

1.1 Calibration with INCA-FLOW

The need for this kind of automated calibration system is caused by:
- Increased calibration complexity
- New functions
- Diagnostics
- Legal requests
- Increased functional complexity
- New controller structures
- Model-based algorithms
- More stringent quality requirements
- Quality depends on the calibration engineer
- Limited reproducibility
- Documentation

The calibration process of finding the optimum values for parameters often necessitates a "Trial-and-error" approach, consisting of considerable test iterations (next Figure). This is undeniably a time-consuming method especially when calibrating a function with today’s complex algorithms. The efficiency and quality of work highly depend on the timeline and on the experience of the calibration engineer. Even so, this approach is still being widely used by calibration engineers.

![Figure 1: Conventional calibration method](image-url)
With INCA-FLOW, the user models the calibration process offline. The same calibration process can of course be reproduced for the relevant control functions in other projects.

Subsequently, INCA-FLOW will seamlessly automate the measurement and calibration of the control unit online via INCA when the engineer returns to the test vehicle (Figures Calibration using INCA-FLOW and Flowchart of automated calibration process).

The general benefits of the INCA-FLOW based calibration process are as follows:

- Consistent and improved calibration quality
- Reproducible with same functions
- Fault minimization
- Reproducible measurement
- Validation of calibration
- Reduced calibration time
• Automation complexity defined by the calibration engineer

> Process-oriented documentation of calibration
• New employees familiarized more quickly with the calibration process
• Standard process established for engine test bench calibration and vehicle calibration
• Similar and/or identical calibration processes implemented for new software/functions/EMS

The tool structure of INCA-FLOW can be divided into three separate parts:
> Project and Process Management
> Graphical Editor
> Interpreter

1.2 Hazards when used for the intended purpose

INCA-FLOW is a development program for calibration activities. Calibration activities govern the behaviour of a control unit and the systems influenced by the control unit. These activities can produce unexpected vehicle behaviour, increasing the risk of accidents. Arbitrary intervention in the control units of the distributed electronic vehicle components can trigger unexpected vehicle reactions, such as swerving, braking or acceleration.

DANGER

INCA-FLOW can access control units in the vehicle. The results of this activity can cause unexpected vehicle reactions and safety-critical situations.

DANGER

Do not use INCA-FLOW for taking on safety-relevant functions in a vehicle. Corresponding use can cause severe personal injury and damage to property.

Always comply with the following points when using INCA-FLOW in the vehicle:
> The vehicle must have an emergency stop button.
> The vehicle must be specially licensed as test vehicle when used on public roads. Any normal approval becomes null and void and there is no insurance protection. If the vehicle is not licensed as a test vehicle, it must not be used in road traffic.
> The vehicle must always be operated by at least two people: one to drive the vehicle, and the other to take care of calibration or operation of INCA-FLOW.
> All calibration hardware must be secured in the vehicle in such a way that it cannot work loose and fly through the vehicle following an emergency stop or sudden evading maneuver.
Do not use INCA-FLOW in a vehicle if this vehicle does not have an emergency stop button.

DANGER
Do not use INCA-FLOW in a vehicle on public roads if this vehicle is not licensed / does not have a license as a test vehicle.

DANGER
Do not use INCA-FLOW in a vehicle on your own; the vehicle must always be operated by two people.
2 General information

INCA-FLOW is an engineering tool running under the Windows operating system (Windows 10). These operating systems are not real-time systems. INCA-FLOW therefore cannot be assured to have the performance and repeatability of a real-time system. The reproducibility and speed of a command from INCA-FLOW for changing a parameter or reading out measurement parameters in online mode largely depend on the reproducibility and speed of the access commands from INCA to the calibration ECU (ETK, CCP, etc.) and cannot be guaranteed. Benchmark measurements have shown a minimum access time of around 100 ms, which may differ from time stamp to time stamp.

The language of some dialogs (e.g., for loading and saving files) depends on the native language of the operating system. The figures in this manual show a German operating system.

Numeric values of the INCA-FLOW FLOAT data type are stored as IEEE 754 numeric standard 64-bit real numbers (C-double): sign bit, 11-bit exponent, 52-bit mantissa. This means that all mathematic calculations using such numbers in a process are subject to a rounding error, which may not be visible as the display setting of the variable reduces the post-decimal digits. Be aware, however, that the result of complex mathematical methods like “Polyfit” (that uses the Gauss algorithm to solve a system of linear equations) might be slightly imprecise. The natural

Variable names may not be longer than 2000 characters.

Character values in calculations - If a character value is encountered during a mathematical calculation (e.g., a STRING variable is used as an argument for a calculation method) a warning will be displayed and a numeric value of 0 (zero) is assumed at run-time.

Always use INCA with the latest Hotfix.

Closing INCA manually interrupts communication between INCA-FLOW and INCA. As a result, you might have to restart INCA-FLOW. While accessing INCA from INCA-FLOW the user management in INCA is disabled.

INCA does not notify external COM clients (i.e., INCA-FLOW) automatically of occurring events like a disconnection of its hardware or other communication errors. These kind of events will be detected by trying to access ECU memory via INCA. The result will be a failure message during run-time of the process.

On systems with two INCA versions (e.g., INCA 7.1 and INCA 7.2) you will be able to access the INCA 7.1 - database with the INCA 7.2 engine. Please be aware that in such case INCA will possibly update the database structures for experiments and workspaces without notification so that access from a former version will not be possible anymore.

Please make sure that all hardware devices, which have been configured under INCA, will also be connected during runtime of INCA-FLOW with processes, which are changing calibration parameter. INCA is trying to communicate permanently with all configured hardware devices. This communication between INCA and the hardware devices has obviously a higher priority in INCA then a command to change a calibration parameter. If the configured hardware devices are not connected to INCA, high differences in the timing of changing calibration parameter might be possible.

Map dimensions can differ between INCA-FLOW and INCA so that the INCA-FLOW methods can unintentionally result in map manipulations beyond the map size. To avoid this, the maps or methods used must be checked accordingly i.e. by synchronizing the calibration
elements with the INCA experiment data. INCA-FLOW cannot change the size of calibration maps and curves.

If a matrix is indexed with square brackets, the result is always a matrix with corresponding dimensions.

\[
A = \begin{bmatrix}
 00 & 10 & 20 & 30 \\
 01 & 11 & 21 & 31 \\
 02 & 12 & 22 & 32 \\
 03 & 13 & 23 & 33 \\
 04 & 14 & 24 & 34 \\
\end{bmatrix},
B = \begin{bmatrix}
 00 & 20 & 10 & 30 \\
 01 & 21 & 11 & 31 \\
 02 & 22 & 12 & 32 \\
 03 & 23 & 13 & 33 \\
 04 & 24 & 14 & 34 \\
\end{bmatrix}
\]

\[
A[0.0; 1.0; 0.2; 2.2;] = \begin{bmatrix}
 00 & | & 10 & | & \ldots \\
 02 & | & 22 & | & \ldots \\
\end{bmatrix},
B[0.0; 2.0; 0.2; 1.2;] = \begin{bmatrix}
 00 & | & 10 & | & \ldots \\
 02 & | & 22 & | & \ldots \\
\end{bmatrix}
\]

\[
\text{Compare}(\cdot A[0.0; 1.0; 0.3; 2.3;], \cdot B[0.0; 2.0; 0.3; 1.3;]) = \text{FALSE}
\]

Figure 4: Example 1

These matrix ranges are not equal, because the values are at different positions.

\[
A = \begin{bmatrix}
 00 & 10 & 20 & 30 \\
 01 & 11 & 21 & 31 \\
 02 & 12 & 22 & 32 \\
 03 & 13 & 23 & 33 \\
 04 & 14 & 24 & 34 \\
\end{bmatrix},
B = \begin{bmatrix}
 -1 & -1 & -1 & -1 \\
 -1 & 00 & 10 & 20 \\
 -1 & 01 & 11 & 21 \\
 -1 & 02 & 12 & 22 \\
 -1 & 03 & 13 & 23 \\
\end{bmatrix}
\]

\[
A[1.1; 1.2; 1.3; 2.3] = \begin{bmatrix}
 11 & | & \ldots \\
 12 & | & \ldots \\
 13 & | & 23 \\
\end{bmatrix},
B[2.2; 3.2; 2.4; 3.4] = \begin{bmatrix}
 11 & | & \ldots \\
 12 & | & \ldots \\
 13 & | & 23 \\
\end{bmatrix}
\]

\[
\text{Compare}(\cdot A[1.1; 1.2; 1.3; 2.3;], \cdot B[2.2; 2.3; 2.4; 3.4;]) = \text{TRUE}
\]

Figure 5: Example 2

These matrix ranges are equal, because the values are at same positions.

Elements that are to be replaced by their current value at run time are marked with two leading double points (::) and a trailing semicolon (::element;). It is possible to resolve an element more than once by prepending additional double points before the name. This is only useful for user-defined STRING elements containing other element names.

The following figure will show such principle:
The meaning of (::) before Element names:
At run-time these variables are resolved (i.e. replaced with the
current variable value) "before" the method parameters are
transmitted to the method for execution.

Set a STRING variable to the name of
another element.
Here: User.String = 'User.X'

Set the content (::) of User.String,
i.e. User.X, to 100.
The double colons have to be inserted
manually into the parameter value.

Output the contents:
User.String = User.X
User.X = 100

Use multiple (::) to resolve a variable
more than once:
:::User.String is resolved to ::User.X and
then to 100.

Figure 6: Element resolving
3 Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy Statement that informs you which data are processed in INCA-FLOW, which data categories INCA-FLOW uses, and which technical measure you have to take to ensure the users privacy. Additionally, we provide further instructions where this product stores and where you can delete personal or personal-related data.

Data Processing
Note that personal or personal-related data respectively data categories are processed when using this product.
The purchaser of this product is responsible for the legal conformity of processing the data in accordance with Article 4 No. 7 of the General Data Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any mishandling of this data.

Data Categories
Note that this product particularly records the following personal or personal-related data respectively data categories for the purposes of assisting with troubleshooting:

- Communication data: IP address, date and time
- User data: The user's Windows UserID

As a result of the optional settings selected in the product during the installation respectively running time, particularly the following personal or personal-related data respectively data categories are recorded for the purposes of assisting development:

- Calibration process design related data, see Storing and Deleting Personal or Personal-Related Information: Windows User Data

When using the ETAS License Manager in combination with user-based licenses, particularly the following personal or personal-related data respectively data categories can be recorded for the purposes of license management:

- Communication data: IP address
- User data: UserID, WindowsUserID

Through the use of this product and, where necessary, with the aid of other add-ons, further personal or personal related data respectively data categories can be recorded for the purposes of further analysis. This may, for example, include vehicle identification numbers (VIN) or vehicle number plates as well as GPS, video, audio or other measuring data. The exact data recorded in each case is determined by you when you configure your measuring system. Note that, in such cases, you are responsible for the legally compliant handling of the data in accordance with applicable national law.

Technical and organizational measures
This product does not itself encrypt the personal or personal-related data respectively data categories that it records. Ensure that the data recorded are secured by means of suitable technical or organizational measures in your IT system, e.g. by using classic anti-theft and access protection on the measurement hardware. Personal or personal-related data in log files can be deleted by tools in the operating system. For the procedure of deleting personal or personal-related data in measure files, see links below.
Storing and Deleting Personal or Personal-Related Information: Windows User Data

INCA-FLOW uses the Windows user information to allow the identification of who produces an output. The following output files are using Windows user information: INCA-FLOW database (*.sdb), project configuration (*.prj.cal) and process files (*.prc.cal).

Purpose
In INCA-FLOW you can create, import and export databases, project configuration and process files, which store personal data of Window users to have the opportunity to identify later each individual user who has created a specific of those above mentions files.

Personal Data
In the INCA-FLOW Database Browser, INCA-FLOW offers the possibility to create, save, im- and export database, project configuration and processes. These files contain your personal windows user data information.

Location
INCA-FLOW Database (*.sdb):
You find the created *.sdb files on the disc drive under your ETAS\INCA-FLOW X.Y\db location as default location and for the backup of the database under ETAS\INCA-FLOW X.Y\Backup. The import and export database storage can be found under the drive chosen by the customer during the im- and export process. When exporting a database, the respective Windows user account id will be stored in the database. During the import of the database, the Windows user account id of the person who created originally the database will be shown to the person importing the respective database.

INCA-FLOW Project configuration (*.prj.cal):
The project configuration are usually stored in the database (*.sdb). The import and export of that project configuration storage can be found under the drive chosen by the customer during the im- and export process. When exporting a project configuration, the respective Windows user account id will be stored in the project configuration file. During the import of this project configuration the Windows user account id of the person who created originally this project configuration will be shown to the person importing the respective project configuration. If a project configuration contains process files (*.prc.cal) from more than one Windows account id, all respective Windows account ids will be shown during the import of the project configuration for the respective process.

INCA-FLOW processes (*.prc.cal):
The processes are usually stored in the database (*.sdb) within a project configuration. The import and export of that process storage can be found under the drive chosen by the customer during the im- and export process. When exporting a process, the respective Windows user account id will be stored in the process export file. During the import of this process, the Windows user account id of the person who created originally this process will be shown to the person importing the respective process.

Deletion
Delete the database, the project configuration and/or the process in the respective folder (see above).

Logfiles during INCA-FLOW and INCA-FLOW interpreter execution

Purpose
INCA-FLOW creates during the execution of the INCA-FLOW designer and the interpreter execution log-files containing the Window account id in order to use those log files for
debugging purpose of the software development. INCA-FLOW uses this information for the Zip and Send to the ETAS Hotline.

Personal Data
The log files containing the personal Window account id of the user.

Location
The log files are stored under your ETAS\INCA-FLOW X.Y\logs location as default location.

Deletion
Delete the log files in the respective folder (see above).

Logfiles collected within INCA-FLOW (Collect logfiles)

Purpose
INCA-FLOW allows a collection of all log-files of INCA-FLOW initiated by the user of INCA-FLOW containing the Window account id in order to use those log files for debugging purpose of the software development. Those collected log files will be zipped and the send to the ETAS Hotline.

Personal Data
The log files containing the personal Window account id of the user.

Location
The log files are stored under your ETAS\INCA-FLOW X.Y\logs location as default location.

Deletion
Delete the log files in the respective folder (see above). Do not send the automatically opened email.
5 Safety

This part features all safety-relevant instructions and regulations. Please read this section carefully. Also inform your colleagues who work with INCA-FLOW.

5.1 Obligations and liability

Knowledge of the basic safety instructions and regulations are vital for the safe use of INCA-FLOW. This manual and in particular the safety instructions must be observed by everyone working with INCA-FLOW.

INCA-FLOW has been developed and programmed according to state-of-the-art engineering. Even so, it is possible for the user and third parties to be exposed to danger during its use and damage to property can occur. For these reasons, INCA-FLOW must only be used for its intended purpose and when in a perfectly safe condition.

5.2 Intended use

INCA-FLOW is only intended for calibrating electronic control units with regard to engineering tools such as INCA. Any other use of this engineering tool for any activity whatsoever is a misuse of the intended deployment of this tool and IAV Products assumes no responsibility whatsoever in the event of misuse or an accident resulting in death, personal injury or damage to property. INCA-FLOW permits the graphic modelling and automation of the calibration process. It can be used for component tests and driving profiles, through to extensive measurement data analysis.

NOTE
This document only describes INCA-FLOW. Information about the correct use of INCA can be found in the corresponding manuals.

5.3 INCA-FLOW safety devices

INCA-FLOW offers the following additional safety devices:

> The INCA-FLOW interpreter has an emergency button (see Interpreter). It resets the control unit to its condition before the particular calibration (switching from the working page to the reference page). In INCA-FLOW, this emergency button is a pure software button and does not relieve you of the obligation to install an emergency stop button in the vehicle.

> As soon as a process modelled in INCA-FLOW is supposed to actively access the control unit, on saving this process you will be asked to assign a safety level and describe the effects of the process. On starting the process later on, you will see a warning message with the description you have given and the safety level. See Save process.

NOTE
You can stop the “Interpreter” by an emergency button or with a shortcut key (see Interpreter), even while other dialogs have the input focus. INCA-FLOW checks at start-up, if another program has already assigned the currently defined shortcut key combination for the emergency stop. If this case occurs, a dialog appears asking you to select a different shortcut key combination. It is advised to check the functionality prior running an online process.
5.4 User’s qualifications

INCA-FLOW and this manual address qualified staff trained in the development and calibration of automotive control units. The INCA-FLOW user is expected to have corresponding knowledge in measurement and control unit technology. Similarly, basic knowledge in using a PC and working with the Windows operating system is also necessary.

INCA-FLOW users should be familiar with electronic management systems and their calibration. This includes calibration procedures, software tools (such as INCA and MDA) and the software algorithm of the systems they would like to calibrate. INCA should be installed on and configured to the system being calibrated.
6 Requirements for using INCA-FLOW

This part contains information about the requirements for using INCA-FLOW and the functionality of INCA-FLOW.

6.1 Hardware

Certain system requirements must be fulfilled to install and work with INCA-FLOW. The minimum system requirements for using INCA-FLOW are as follows:

- 1600 MHz CPU
- Operating systems: Microsoft WINDOWS 10
- 1 GB RAM
- Hard disk with a minimum of 500 GB of free space
- XGA graphics card with XGA monitor and a resolution of at least 1024 x 768 with 16 bit colors

The recommended system requirements for using INCA-FLOW are as follows:

- 2 GHz dual-core CPU
- Operating systems: Microsoft WINDOWS 10
- 2 GB RAM
- Hard disk with 1 GB of free space
- CD-ROM drive for installation
- SXGA graphics card with SXGA monitor and a resolution of at least 1280 x 1024 with 32 bit colors

6.2 Software

INCA-FLOW processes are managed by integration with an SQ-Lite database. Utilization of the SQ-Lite database is therefore mandatory. The following figure illustrates the relationship between the different components and functions of the INCA-FLOW software and how they interact with the database. Each component will be explained in greater detail further on in this user manual.
The database holds all A2L-definitions for the user-created calibration processes and further information required by INCA, e.g. database location and the device used. Processes are designed via a graphical editor and saved to the database as well. The interpreter defines the interface to INCA and executes the processes.
Installation of INCA-FLOW

This part tells you how to install INCA-FLOW.

7.1 Preparing to install

Check that all items have been delivered and that your workstation complies with the system and software requirements.

NOTE

Administrator rights are required to install and uninstall INCA-FLOW.

7.2 Installing INCA-FLOW

This section gives you step-by-step instructions on how to install INCA-FLOW.

The setup will start automatically when you run the INCA-FLOW installation CD. Otherwise, double-click the setup.exe file in Microsoft Windows Explorer. The “welcome” window opens. Click “Next” to start the setup wizard.

Figure 8: Welcome window

The “Release Notes” Window opens. This window shows you safety instructions for INCA-FLOW. Read these instructions very carefully. Click on “Accept” if you want to continue the installation. Click on “Do Not Accept” if you want to cancel the installation.
INCA-FLOW is an engineering tool designed for use only by well-trained and qualified personnel. Calibration activities require influence or control over the electronic control system. ETAS assumes no responsibility whatsoever in the event of misuse or an accident resulting in death, personal injury or property damage.

Critical situation as a result of intervention caused system controlled by the ECU may occur. This will cause unexpected behaviour to the vehicle. It is the responsibility of the user or vehicle operator to ensure that the installations of calibration devices within the vehicle are properly secured in the event of a hazardous condition (e.g. Emergency-Off status or Limp-home operation).

Click “Next” to start installation in the default directory. Or click “Browse” to specify the required paths for installing the software.
The installer will install INCA-FLOW to the following folder.
To install in this folder, click "Next". To install to a different folder, enter it below or click "Browse."

Folder: c:\ETAS\INCA-FLOW
100 MB needed, 85180.00 MB free

Copy tutorials

Figure 10: Select installation folders

Installing INCA-FLOW, please wait...

Figure 11: Installing INCA-FLOW
7.3 Licensing the Software

To be able to work with an ETAS software product, you require a license. This section contains basic details on this subject.

> “ETAS License Models”
> “How to get a License”
> “The License File”

Details concerning the scope of the licenses and other legal aspects can be found in “Terms and Conditions”.

7.3.1 ETAS License Models

There are three different license models available for licensing your ETAS software:

A license of this type is managed by the user him/herself.

As it is linked to a particular PC (better: to the MAC address of the Ethernet adapter), it is valid wherever the PC is used.

When you change your PC, you require a new license.

The licenses (of a department or company) are managed centrally on a server by
a designated person.
The license is linked to the user name with which the user is registered in the network and is available on every PC in the network.
If the relevant PC is disconnected from the network, the license can be “borrowed.”

Most of what is true of the user-named license applies to this type of license.
The difference is that here several users share a limited number of licenses.

7.3.2 How to get a License

If your company has a tool coordinator and server-based license management for ETAS software, contact this person. Otherwise (in the case of a machine name license) you obtain your license from the ETAS license portal (the URL is shown on your Entitlement Certificate).

There are three ways of logging in on the welcome page:
Once you have logged in, a specific activation is visible and can be managed – the activation ID is shown on your Entitlement Certificate.

All activations of the entitlement are visible and can be managed (e.g. for a company with just one entitlement).

All activations of the entitlements assigned to the user account are visible and can be managed (e.g. for a tool coordinator responsible for several entitlements).

NOTE
If you need help in the portal, click the Help link.

1. The activations refer to a specific product, its license conditions, the available number of licenses and other details required for generating a license. Activations are identified uniquely with activation IDs.

An entitlement shows the authorizations you have as a user; it stands for the right to own one or more licenses for a product. It is a kind of account of rights of use for software from which you can take licenses as you need to. Information on the hosts must be entered to activate licenses:
> Machine-named license: The MAC address of the Ethernet adapter to which the license is to be bound is required here.
> User-named license: Here, you need a server host or a server triad as well as a user name.
> Concurrent (floating) license: Here, you need a server host or a server triad.

NOTE
If this data changes (e.g. due to changes in the hardware or a change of user), the license must be given a “rehost”. This procedure is also described in the portal help file.

The result of your activities is the provision of a file <name>.lic with which you can license your software in the ETAS License Manager.

7.3.3 Check the license status

This chapter tells you how to check the license status.
In the Windows Start menu, select Programs, ETAS, License Management, ETAS License Manager.

![ETAS License Manager](image)

Figure 13: ETAS License Manager

7.3.4 Add a license file

This chapter tells you how to add a license file.

In the Windows Start menu, select Programs, ETAS, License Management, ETAS License Manager. The ETAS License Manager opens.

Click “File” and select “Add License File”. The “Install License” window opens.
Search the ETAS license file and click “Open”. Click “OK” to close the window. The “ETAS License Manager” now shows the activated parts of INCA-FLOW. Click “Close”.

![Install license]

Figure 14: Install license

It is possible to install INCA-FLOW with a silent setup. For the silent setup, please use command line parameters.

By performing a silent setup you implicitly agree to the INCA-FLOW license.

NOTE

Close all other applications before you start the silent setup.

7.4 INCA-FLOW silent setup

The following command line parameters are possible:

> -x [foldername] Extracts the original INCA-FLOW setup Setup.exe and INCA-FLOWSetup.msi to the target folder and ends immediately.
> -q [setupscript] Full silent installation with the parameters from e.g. setup.ini.
> -log [filename] Log file name
> -errordlg {YES|NO} Display dialogs in case of critical installation errors
> -inst [foldername] Target directory for INCA-FLOW installation

The parameters specified in setup.ini can be overridden via command line parameters, see setup.ini.
8 Installing the INCA-FLOW Runtime license

The INCA-FLOW Compiler (Export SI package) can create stand-alone scripts, which can be executed with INCA.

Such scripts require an INCA-FLOW Runtime license, which needs to be obtained from ETAS and installed with ETAS license manager (see chapter 6).

To install the runtime license information on a target PC, run \RuntimeLicense\RTLicenseSetup.exe from the INCA-FLOW setup location.
9 Uninstalling INCA-FLOW

This section contains information about uninstalling INCA-FLOW.

NOTE
Administrator rights are required to uninstall INCA-FLOW.

Follow the steps to uninstalling INCA-FLOW
1. Go to the menu "ETAS"
2. Select “Uninstall INCA-FLOW”
3. Click “Yes” to confirm.
4. INCA-FLOW has been uninstalled.

NOTE
The subfolders ‘logs’ and ‘db’ will not be removed by the uninstaller.
All processes will be kept, the SQLite database remains in the ‘db’-folder.
10 ETAS Contact Addresses

ETAS HQ
ETAS GmbH
Borsigstraße 24
70469 Stuttgart
Germany
Phone: +49 711 3423-0
Fax: +49 711 3423-2106
WWW: www.etas.com

ETAS Subsidiaries and Technical Support
For details of your local sales office as well as your local technical support team and product hotlines, take a look at the ETAS website:

ETAS subsidiaries
WWW: www.etas.com/en/contact.php

ETAS technical support